3' deletions cause aniridia by preventing PAX6 gene expression.

نویسندگان

  • J D Lauderdale
  • J S Wilensky
  • E R Oliver
  • D S Walton
  • T Glaser
چکیده

Aniridia is a panocular human eye malformation caused by heterozygous null mutations within PAX6, a paired-box transcription factor, or cytogenetic deletions of chromosome 11p13 that encompass PAX6. Chromosomal rearrangements also have been described that disrupt 11p13 but spare the PAX6 transcription unit in two families with aniridia. These presumably cause a loss of gene expression, by removing positive cis regulatory elements or juxtaposing negative DNA sequences. We report two submicroscopic de novo deletions of 11p13 that cause aniridia but are located >11 kb from the 3' end of PAX6. The clinical manifestations are indistinguishable from cases with chain-terminating mutations in the coding region. Using human x mouse retinoblastoma somatic cell hybrids, we show that PAX6 is transcribed only from the normal allele but not from the deleted chromosome 11 homolog. Our findings suggest that remote 3' regulatory elements are required for initiation of PAX6 expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A deletion 3' to the PAX6 gene in familial aniridia cases.

PURPOSE PAX6 mutations cause aniridia as well as other various congenital eye abnormalities. Aniridia can be due to both point mutations and chromosomal deletions/rearrangements. Therefore, a complete search for PAX6 gene alterations in aniridia subjects requires a technically complex approach involving the comprehension of fluorescence in situ hybridization (FISH) analysis. In the present stud...

متن کامل

Large novel deletions detected in Chinese families with aniridia: correlation between genotype and phenotype

PURPOSE To describe the clinical and genetic findings in two Chinese families with aniridia and other ocular abnormalities. METHODS Two unrelated families were examined clinically. After informed consent was obtained, genomic DNA was extracted from the venous blood of all participants. Mutation screening of all exons of the PAX6 (paired box gene 6) gene was performed by direct sequencing of P...

متن کامل

Multiplex ligation-dependent probe amplification (MLPA) enhances the molecular diagnosis of aniridia and related disorders

Mutations in the PAX6 gene have been implicated in aniridia, a congenital malformation of the eye with severe hypoplasia of the iris. However, not all aniridia cases can be explained by mutations in the PAX6 gene. The purpose of this study was to enhance the molecular diagnosis of aniridia using multiplex ligation-dependent probe amplification (MLPA). Total genomic DNA was isolated from periphe...

متن کامل

Cloning and characterization of canine PAX6 and evaluation as a candidate gene in a canine model of aniridia

PURPOSE Mutations in PAX6 cause human aniridia. The small eye (sey) mouse represents an animal model for aniridia. However, no large animal model currently exists. We cloned and characterized canine PAX6, and evaluated PAX6 for causal associations with inherited aniridia in dogs. METHODS Canine PAX6 was cloned from a canine retinal cDNA library using primers designed from human and mouse PAX6...

متن کامل

Molecular analysis of the PAX6 gene for congenital aniridia in the Korean population: Identification of four novel mutations

PURPOSE To analyze the paired box gene 6 (PAX6) in Korean patients with congenital aniridia. METHODS Genomic DNA was isolated from peripheral blood leukocytes of 22 aniridia patients in 18 unrelated families. Polymerase chain reaction was performed for all 14 exons of PAX6 followed by bidirectional sequencing. RESULTS Fourteen different kinds of mutations were detected in 16 of 18 unrelated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 25  شماره 

صفحات  -

تاریخ انتشار 2000